Interestingness Measures for Association Rules within Groups
نویسندگان
چکیده
The study of association rules within groups of individuals in a database is interesting to define their characteristics and their behavior. In this paper, we define group association rules and we study interestingness measures for them. These evaluation measures can be used to rank groups of individuals and also rules within each group.
منابع مشابه
Modeling of the counter-examples and association rules interestingness measures behavior
Association rules discovery is one of the most important tasks in Knowledge Discovery in Data Bases. Since the initial APRIORI algorithm, many efforts have been done in order to develop efficient algorithms. It is well known that APRIORI-like algorithms within the (unsatisfying) support/confidence framework may produce huge amounts of rules and thus one of the most important steps in associatio...
متن کاملNumeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملAssociation Rule Generation and Evaluation of Interestingness Measures for Artwork Tags
Finding associations between groups of items within a data set is referred to as the problem of association rule mining. This can be decomposed into the two subproblems frequent itemset mining and association rule generation. The open source data mining framework ELKI used throughout this work for experiments so far only supports the first subproblem. Therefore the implementation of association...
متن کاملSelecting a Right Interestingness Measure for Rare Association Rules
In the literature, the properties of several interestingness measures have been analyzed and a framework has been proposed for selecting a right interestingness measure for extracting association rules. As rare association rules contain useful knowledge, researchers are making efforts to investigate efficient approaches to extract the same. In this paper, we make an effort to analyze the proper...
متن کاملCombining Clustering techniques and FCA to characterize Interestingness Measures
Formal Concept Analysis "FCA" is a data analysis method which enables to discover hidden knowledge existing in data. A kind of hidden knowledge extracted from data is association rules. Di erent Interestingness Measures "IMs" were reported in the literature to extract only relevant association rules. Given a dataset, the choice of a good interestingness measure remains a challenging task for a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intell. Data Anal.
دوره 17 شماره
صفحات -
تاریخ انتشار 2010